www.barghnews.com

PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Choi	
First name: Hyuntae	Other name/s:
Abbreviation for degree as given in the University calendar: M.E.	
School: School of Electrical Engineering and Telecommunications	Faculty: Faculty of Engineering
Title: DC/DC Converters for Grid Integration of Large-scale Solar Photovoltaic Systems	

Abstract 350 words maximum: (PLEASE TYPE)

The global trend towards larger size ground mounted solar photovoltaic (PV) power plants is set to continue. This installation trend will challenge the current PV plant architectures by requiring power converters with a higher power rating and a higher voltage level at the point of common coupling (PCC), which can lead to higher ratio transformers or more transformation stages to be used for the connection of the solar farm with the electricity grid.

Two possible solutions are proposed in this thesis, the first solution is a multistring PV system architecture based on a high-voltage-gain DC/DC converter. By introducing a high-voltage-gain DC/DC converter, the PV system can be connected to a medium voltage grid through a single transformer stage and the turns ratio of transformer can be reduced, thus resulting in reduced cost and increased efficiency of the PV system.

The second solution is a PV system based on a cascaded H-bridge (CHB) multilevel converter topology. Despite the fact that the CHB converter topology can deal with the aforementioned challenges, it faces the issue of leakage current that flows through the solar panel parasitic capacitance to ground which could damage the PV panels and pose safety problems. This thesis proposes a CHB topology with multiphase isolated DC/DC converter for a large-scale PV system which eliminates the leakage current issue. At the same time, the multiphase structure of the DC/DC converter helps to increase the power rating of the converter and to reduce the PV voltage and current ripples.

The first proposed PV system has achieved satisfactory performance for boosting the voltage, thus the PV system is connected to a medium voltage grid through a single transformer with low turns ratio. Moreover the interleaved configuration of the high-voltage-gain DC/DC converter helps to increase the voltage gain and power rating of the converter.

The medium voltage grid connection with a single transformer stage also has been achieved in the second proposed PV system. Moreover, the use of a multiphase isolate DC/DC converter has completely removed the leakage current issue and has resulted in better maximum power point tracking (MPPT) efficiency than the single-phase converter case.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only).

Signature

.....

Witness

Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY

Date of completion of requirements for Award:

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS

COPYRIGHT STATEMENT

'I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary right, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorize University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only).

I hive either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.'

Signed.....

Date

AUTHENTICITY STATEMENTS

'I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of contents has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.'

Signed.....

Date

ORIGINALITY STATEMENT

'I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.'

Signed.....

Date

This thesis is dedicated to my grandmother.

THESIS ABSTRACT

The global trend towards larger size ground mounted solar photovoltaic (PV) power plants is set to continue, with the development of several projects in the 200MW range and higher. This installation trend will challenge the current PV plant architectures by requiring power converters with a higher power rating and a higher voltage level at the point of common coupling (PCC), which can lead to higher ratio transformers or more transformation stages to be used for the connection of the solar farm with the electricity grid.

Two possible solutions are proposed in this thesis to minimize the number of transformer stages and/or the transformer turns ratio of a grid-connected PV plant without changing the standard configuration of the system.

The first solution is a multistring PV system architecture based on a high-voltage-gain DC/DC converter. By introducing a high-voltage-gain DC/DC converter, the PV system can be connected to a medium voltage grid through a single transformer stage and the turns ratio of transformer can be reduced, thus resulting in reduced cost and increased efficiency of the PV system. A 1MW section of a PV plant has been modeled and simulated using MATLAB/Simulink and PLECS Blockset. The simulation results of three different case studies are presented to evaluate the performance of the proposed PV system configuration.

The second solution is a PV system based on a cascaded H-bridge (CHB) multilevel converter topology. Despite the fact that the CHB converter topology can deal with the aforementioned challenges, it faces the issue of leakage current that flows through the solar panel parasitic capacitance to ground which could damage the PV panels and pose safety problems. This thesis proposes a CHB topology with multiphase isolated DC/DC converter for a large-scale PV system which eliminates the leakage current issue. At the same time, the multiphase structure of the DC/DC

converter helps to increase the power rating of the converter and to reduce the PV voltage and current ripples. A 0.54 MW rated seven-level CHB converter using multiphase isolated DC/DC converters has been modeled and simulated using MATLAB/Simulink and PLECS Blockset. Simulation results of different case studies are presented to evaluate the performance of the proposed PV system configuration.

The proposed PV system based on a high-voltage-gain DC/DC converter has achieved satisfactory performance for boosting the voltage, thus the PV system is connected to a medium voltage grid through a single transformer with low turns ratio. Moreover the interleaved configuration of the high-voltage-gain DC/DC converter helps to increase the voltage gain and power rating of the converter.

The medium voltage grid connection with a single transformer stage also has been achieved in the proposed PV system based on a CHB topology with multiphase isolated DC/DC converter. Moreover, the use of a multiphase isolate DC/DC converter has completely removed the leakage current issue and has resulted in better maximum power point tracking (MPPT) efficiency than the single-phase converter case.

ACKNOWLEDGEMENTS

It is indeed a great pleasure to thank all those who have, directly or indirectly, helped me in successfully completing thesis.

First I would like to express my deepest sense of gratitude and appreciation to my supervisor, Professor Vassilios G. Agelidis who patiently and constantly has been inspiring, encouraging and guiding me throughout the Master program.

Special thanks are extended to my co-supervisor Dr. Mihai Ciobotaru for his advice throughout my research work and also for the constructive and valuable comments on the thesis.

Particular thanks go to all my colleagues from the Australian Energy Research Institute for their friendly companionship. To Dr. Minsoo Jang, who helped me to find the initial step of the research, thank you very much for your assistance.

And, last but not least, I want to express my deepest gratitude to my entire family in Korea for the substantial and continuous support which I have received during the elaboration and finalization of this work.

호주생활에 지쳐고 힘들어 외로움에 몸부림 칠때 잠시나마 함께 외로움을 극복하게 도와준 JD 기영이형 (지금은 혼자서 연애질 중이지만), 집에서 손가락 운동과 대화로 힘이되어준 하워드 용사들 (김태균, 윤재성, 안차호), 조촐하지만 휴식의 즐거움을 안겨준 TETB계원들 (하워드 용사들 + 김경훈, 박종성), 적응하기 힘든 대학원 생활에 도움을 준 KPSA 형, 동생들 고맙습니다.

TABLE OF CONTENTS

THESIS ABST	TRACT	ii
ACKNOWLEI	DGEMENTS	iv
TABLE OF CO	ONTENTS	v
List of Figur	es	viii
List of Table	25	xi
List of Acro	nyms	xii
List of Parar	neters	xiv
Chapter 1	Introduction	1
1.1.	Background	1
1.1.1	. Photovoltaic Fundamentals	1
1.1.2	. Maximum Power Point Tracking	2
1.1.3	. Grid-Connected PV Systems	6
1.1.4	Grid Requirements	10
1.2.	Motivation	12
1.3.	Objective	14
1.3.1	. Problem Formulation	14
1.3.2	. Objective	14
1.4.	List of Publications	15
1.5.	Thesis Outline	16
Chapter 2	DC/DC Converters Overview	17
2.1.	High-Voltage-Gain DC/DC Converters	17
2.1.1	. Cascade Boost Converters	
2.1.2	. High-Voltage-Gain Converters with a Coupled Inductor	20
2.1.3	. High-Voltage-Gain Converters with a Switched Capacitor	
2.1.4	High-Voltage-Gain Interleaved Converters	25

2.1.5	5. Summary	27
2.2.	Isolated DC/DC Converters	29
2.2.1	Single-Phase Isolated DC/DC Converters	29
2.2.2	2. Multiphase Isolated DC/DC Converters	33
2.2.3	3. Summary	37
Chapter 3	A Large-Scale PV System Based on a Soft-Switched Interleaved Boost Converter	39
3.1.	Introduction	39
3.2.	SIB Converter Characteristic	41
3.2.1	SIB Converter Topology	41
3.2.2	2. SIB Converter Operation Principle	43
3.2.3	3. SIB Converter Design	47
3.3.	Two-Level Voltage-Source Converter (VSC)	50
3.4.	Large-Scale PV System based on SIB Converter	52
3.4.1	Proposed PV System Model	52
3.4.2	2. Control System	54
3.5.	Simulation Results	57
3.5.1	. Constant Solar Irradiation	58
3.5.2	2. Fast Changing Solar Irradiation	58
3.5.3	B. Grid Voltage Sag	59
3.6.	Conclusion	66
Chapter 4	A Large-Scale PV System Based on a Multiphase Boost-Half-Bridge Converter and CHB	
	Multilevel Converter	67
4.1.	Introduction	67
4.2.	M-BHB Converter Characteristic	69
4.2.1	M-BHB Converter Topology	69
4.2.2	2. M-BHB Converter Operation Principle	71
4.2.3	B. M-BHB Converter Design	75
4.3.	Cascaded H-Bridge Multilevel Converter	78
4.3.1	Basic of CHB	78
4.3.2	2. Modulation Scheme	79

4.4.	Large-Scale PV System based on the M-BHB Converter	
4.4.1	Proposed PV system	82
4.4.2	2. Control System	84
4.5.	Simulation Results	86
4.5.1	Steady-State Comparison (N1P1 case & N1P2 case)	86
4.5.2	2. Fast Changing Solar Irradiation	89
4.5.3	3. Leakage Current and PV Panel Parasitic Capacitance to the Ground	89
4.6.	Conclusion	97
Chapter 5	Conclusion	98
5.1.	Summary	98
5.2.	Future Work	99
References		101

List of Figures

Figure 1-1 Depiction of PV system modularity	2
Figure 1-2 <i>v-i</i> and <i>v-p</i> characteristic of a PV cell	3
Figure 1-3 <i>v-i</i> and <i>v-p</i> characteristic of a PV cell (under different solar irradiation)	3
Figure 1-4 <i>v-i</i> and <i>v-p</i> characteristic of a PV cell (under different temperature)	4
Figure 1-5 Flow chart of the P&O method	5
Figure 1-6 Flow chart of the IncCond method	6
Figure 1-7 Percentages of grid connected and off-grid PV systems	7
Figure 1-8 Grid-connected PV system architectures	9
Figure 1-9 Global cumulative PV capacity since 2000	12
Figure 1-10 Annual installed and cumulative power output capacity of large-scale PV systems	13
Figure 2-1 A boost converter comprised of two cascade boost converters	18
Figure 2-2 Integrated cascade boost converter	19
Figure 2-3 Integrated cascade boost converter with ZVS	19
Figure 2-4 High-voltage-gain converter with a coupled inductor	20
Figure 2-5 High-voltage-gain soft switching converter with a coupled inductor	21
Figure 2-6 High-voltage-gain soft switching converter with a coupled inductor 2	22
Figure 2-7 <i>N</i> -stage high-voltage-gain converter with a switched capacitor	23
Figure 2-8 <i>N</i> -stage high-voltage-gain switched capacitor resonant converter	23
Figure 2-9 High-voltage-gain ZVC switched capacitor converter	24
Figure 2-10 High-voltage-gain interleaved converter	25
Figure 2-11 High-voltage-gain interleaved converter with a coupled inductor	26
Figure 2-12 ZVT interleaved converter with a coupled inductor and active clamp circuits	27

Figure 2-13 Soft-switched interleaved boost converter	27
Figure 2-14 (a) Flyback converter (b) forward converter	30
Figure 2-15 Push-pull converter	31
Figure 2-16 Half-bridge converter	31
Figure 2-17 Full-bridge converter	32
Figure 2-18 Multiphase dual active bridge converter	33
Figure 2-19 Multiphase ZVS PWM DC/DC converter	34
Figure 2-20 V6 converter	35
Figure 2-21 Multiphase step-up DC/DC converter	36
Figure 2-22 Multiphase Boost-half-bridge converter	37
Figure 3-1 Basic cell of the soft-switched interleaved boost converter (SIB converter)	41
Figure 3-2 Example of extension <i>N</i> =2, <i>P</i> =1	42
Figure 3-3 Example of extension <i>N</i> =1, <i>P</i> =2	42
Figure 3-4 Comparison between symmetrical and asymmetrical switching	43
Figure 3-5 Operation modes of the SIB converter (<i>N</i> =1, <i>P</i> =1)	45
Figure 3-6 Key waveform of the SIB converter (<i>N</i> =1, <i>P</i> =1)	46
Figure 3-7 Voltage gain of the SIB converter ($P=1$, different N) and conventional boost converter	47
Figure 3-8 Two-level three-phase voltage-source converter	50
Figure 3-9 Principle of VSC	51
Figure 3-10 General structure of the large-scale PV system based on the SIB converter	52
Figure 3-11 Two-level three-phase VSC and inductor filter	53
Figure 3-12 Control diagram of the SIB converter	54
Figure 3-13 Control diagram of the VSC	56
Figure 3-14 Simulation results under constant solar irradiation	60
Figure 3-15 Simulation results under constant solar irradiation	61
Figure 3-16 Simulation results under fast changing solar irradiation	62

Figure 3-17 Simulation results under fast changing solar irradiation	63
Figure 3-18 Simulation results under grid voltage sag	64
Figure 3-19 Simulation results under grid voltage sag	65
Figure 4-1 Boost-half-bridge converter: basic cell of M-BHB converter	69
Figure 4-2 Example of extension: <i>N</i> =1, <i>P</i> =2	70
Figure 4-3 Example of extension: N=2, P=1	70
Figure 4-4 Operation modes of the BHB converter (<i>N</i> =1, <i>P</i> =1)	73
Figure 4-5 Key waveforms of the BHB converter (<i>N</i> =1, <i>P</i> =1)	74
Figure 4-6 Voltage gain of the M-BHB converter (<i>P</i> =1, different <i>N</i>)	75
Figure 4-7 H-Bridge based converter topologies	78
Figure 4-8 Phase-shifted PWM for seven-level CHB converter	80
Figure 4-9 Level-shifted PWM for a seven-level CHB converter	81
Figure 4-10 General structure of the large-scale PV system based on the M-BHB converter	82
Figure 4-11 Seven-level Cascaded H-bridge topology – one phase-leg	83
Figure 4-12 Control diagram of the CHB converter	85
Figure 4-13 Simulation results of <i>N</i> 1 <i>P</i> 1 BHB converter under constant solar irradiation	90
Figure 4-14 Simulation results of <i>N</i> 1 <i>P</i> 1 BHB converter under constant solar irradiation	91
Figure 4-15 Simulation results of <i>N</i> 1 <i>P</i> 2 BHB converter under constant solar irradiation	92
Figure 4-16 Simulation results of <i>N</i> 1 <i>P</i> 2 BHB converter under constant solar irradiation	93
Figure 4-17 Simulation results of <i>N</i> 1 <i>P</i> 2 BHB converter under fast changing solar irradiation	94
Figure 4-18 Simulation results of <i>N</i> 1 <i>P</i> 2 BHB converter under fast changing solar irradiation	95
Figure 4-19 Voltages across PV panel parasitic capacitance to ground and leakage currents (Phase A)96

List of Tables

Table 1-1 Summary of IncCond method	5
Table 1-2 Summary of Standards dealing with grid connected PV systems	11
Table 3-1 BP365 PV module specification	53
Table 3-2 Simulation specification of the PV system based on the SIB converter	57
Table 4-1 Simulation specification of the PV system based on the M-BHB converter	87

List of Acronyms

AC	Alternative Current
BHB	Boost-Half-Bridge
СНВ	Cascaded H-Bridge
ССМ	Continuous Conduction Mode
DC	Direct Current
GTO	Gate Turn-Off
IGBT	Insulated Gate-Bipolar Transistor
IncCond	Incremental Conductance
M-BHB	Multiphase Boost-Half-Bridge
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
MPP	Maximum Power Point
MPPT	Maximum Power Point Tracking
Р&О	Perturb and Observe
PCC	Point of Common Coupling
PI	Proportional Integral
PLL	Phase-Locked Loop
PV	Photovoltaic
PWM	Pulse-Width Modulation
SIB	Soft-switching Interleaved Boost
SC	Switched-Capacitor
THD	Total Harmonic Distortion
VSC	Voltage-Source Converter

ZCS	Zero Current Switching
ZVS	Zero Voltage Switching
ZVT	Zero Voltage Transition

List of Parameters

C_{a1}, C_{a2} and C_{an}	Auxiliary circuit capacitor
C_{D1}, C_{D2} and C_{Dn}	Output capacitor of the voltage-doubler
C_{IU} , and C_{IL}	Upper and lower split capacitor of CHB
C_{OLI}, C_{OL2} and C_{OLn}	Lower capacitor of the voltage-doubler
C_{O}	Output capacitor of the DC/DC converter
C_{ULI}, C_{UL2} and C_{ULn}	Upper capacitor of the voltage-doubler
C_p	PV panel parasitic capacitance
D_{U1}, C_{U2} and C_{Un}	Upper diode of the voltage-doubler
D_{Ll}, C_{L2} and C_{Ln}	Lower diode of the voltage-doubler
f	Fundamental frequency
f_{sw}	Switching frequency
i_{Ca} , i_{Cb} , and i_{Cc}	Output current of VSI and CHB
i_{Cp_a} , i_{Cp_b} , and i_{Cp_c}	PV panel parasitic capacitance current
I _{DL}	Voltage of lower diode of the voltage-doubler
I_{DU}	Voltage of upper diode of the voltage-doubler
I _{LI}	Input inductor current
I _{La}	Auxiliary inductor current
I_{Lk}	Leakage inductor current
I _{mpp}	Maximum power point current of the PV array
I_{pv}	PV array current
Isc	Short circuit current of the PV array
I _{SL}	Lower switch current

I_{SU}	Upper switch current
L_{a1}, L_{a2} and L_{an}	Auxiliary circuit inductor
L_f	Output filter inductance
L_{II}, L_{I2} and L_{In}	Input inductance of the DC/DC converter
L_{k1}, L_{k2} and L_{kn}	Leakage inductance of the transformer
P _{mpp}	Maximum power of PV array
P_{pv}	PV array power
S_{UI}, S_{U2} and S_{Un}	Upper switch of the DC/DC converter
S_{L1}, S_{L2} and S_{Ln}	Lower switch of the DC/DC converter
Q	Reactive power
V _{Ca}	Auxiliary circuit capacitor voltage
v_{ca} , v_{cb} , and v_{cc}	Output phase to phase voltage of VSC and CHB
v_{cp_a} , v_{cp_b} , and v_{cp_c}	PV panel parasitic capacitance voltage
V _{CD}	Voltage-doubler capacitor voltage
V _{co}	Output capacitor voltage
$v_{grid a}$, $v_{grid b}$, and $v_{grid c}$	Grid voltage at PCC
V _{dc}	DC bus voltage
V _{in}	Input DC voltage of the DC/DC converter
v_{Lab} , v_{Lbc} , and v_{Lca}	Output line-to-line voltage of VSC and CHB
V _{mpp}	Maximum power point voltage of the PV array
V _{oc}	Open circuit voltage of the PV array
Vout	Output DC voltage of the DC/DC converter
V_{pv}	PV array voltage

Chapter 1 Introduction

This chapter gives the motivation and key objectives of the research reported in this thesis and some background information on the main topic of this thesis. General background information on photovoltaic technologies is given in Section 1.1. The motivation and objectives of the thesis are given in Section 1.2 and Section 1.3 respectively. Finally, the thesis outline and the list of publications are presented in Section 1.4 and Section 1.5 respectively.

1.1. Background

1.1.1. Photovoltaic Fundamentals

The sun is almost an inexhaustible source of energy capable of supplying large amounts of energy. The total amount of solar energy absorbed by the desert area in six hours is comparable to the total global energy consumption in an entire year [1]. This large amount of solar energy incident on the earth remains unharnessed.

Photovoltaic (PV) technology converts this energy into electrical energy. The basic element of PV technology is the solar cell. A solar cell consists of a p-n junction fabricated in a thin wafer of layer of semiconductor similar to a diode. When exposed to light, photons with energy greater than the band-gap energy of the semiconductor create an electron-hole-pair. These carriers are swept apart under the influence of the internal electric fields of the p-n junction and create a current proportional to the incident radiation [2]. In order to obtain adequate output voltage, PV cells are connected in